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Abstract
Using the anisotropic time-dependent Ginzburg–Landau theory we study the effect of ordered
and disordered pinning on the time response of superconducting strips to an external current that
switched on abruptly. The pinning centers result in a considerable delay of the response time of
the system to such abrupt switching on of the current, whereas the output voltage is always larger
when pinning is present. The resistive state in both cases are characterized either by dynamically
stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms
for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by
the phase-slip state. However, the range of the applied current for the phase-slip state increases
significantly when pinning is introduced. Qualitative changes are observed in the dynamics of
the superconducting condensate in the presence of pinning.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Phase-slip centers (PSCs) are one of the main mechanisms for
dissipation in narrow current-carrying superconducting thin
films, resulting in the formation of pronounced steps in both
voltage versus temperature [1] and current–voltage char-
acteristics [2, 3]. In the phase-slip state the superconducting
order parameter oscillates in time allowing the phase to relax
by quanta of π2 [4, 5]. For superconducting samples with
lateral dimensions larger than the superconducting coherence
length ξ, PSCs are converted into phase-slip lines with almost
uniform suppression of the order parameter along the sample
[6]. The oscillations of the order parameter can also occur in
the form of propagating waves creating a π2 phase difference
across the sample, which are called kinematic vortices [7–11].
These vortices move with velocity [9] ≈ −v 10 m s ,kv

5 1 which
is much larger than the maximal measured speed of Abriko-
sov vortices [12] ≈ −v 10 m s .av

3 1 Because of their very high

velocity kinematic vortices do not retain their circular struc-
ture [7, 8, 13].

Another mechanism for the current-induced resistive
state is the formation of hot spots, where the normal state is
realized due to the local increase of temperature [14]. It is
believed that the phase-slip regime occurs close to the
superconducting transition temperature [1, 3], and that the hot
spot mechanism dominates at lower temperatures [14].
However, recent experimental studies implementing the
pulsed current technique revealed that hot spots never form
unless PSCs have first been nucleated [15–18]. Numerical
simulations within the time-dependent Ginzburg–Landau
(TDGL) theory confirmed that the hot spot regime is always
initiated by the phase-slip mechanism [19].

In this work we investigate the effect of pinning of the
response of a superconducting strip to external current, which
is switched on abruptly, using the TDGL theory. We are
motivated by the fact that the response of any superconductor
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to external electric and magnetic fields is strongly affected by
the disorder in the system and by edge imperfections [20],
which are inevitable in real superconductors. For example, the
critical field for penetration of vortices in type-II super-
conductors is strongly reduced when introducing edge
defects, resulting in qualitative changes in the magnetization
curves of the system (see, e.g., [21]). The disorder also results
in multiple reentrant transitions between the superconducting
and normal states by increasing the applied current (see, e.g.,
[17]). In current-carrying superconductors the inhomogene-
ities strongly affect the current distribution in the system,
leading to qualitative changes in the dynamics of the super-
conducting condensate [7]. Our numerical simulations show
that the response time of the system to the external current
decreases considerably when introducing pinning due to the
reduced barrier for the nucleation of superconducting vor-
tices/antivortices. Motion of these vortices/antivortices is
dynamically stable in time and are responsible for the resistive
state of the system at low current values. At larger currents the
fast moving vortices initiate the formation of hot-spots, which
expand in time until the whole system switches into the
normal state.

The manuscript is organized as follows. Section 2
represents our theoretical approach. Section 3 is about the
current–voltage characteristics of the sample without and with
the ordered and random pinning. In section 4 we study
response of our system to abrupt switching on of the external
current by calculating the voltage versus time characteristics
of the sample. Our findings are summarized in section 5.

2. Theoretical formalism

As model system we consider a superconducting strip with
lateral dimensions L and w of the computational unit cell. The
pinning is introduced as square inclusions (size a) of another
superconducting material with smaller critical temperature

<T Tc1 c (see figure 1). The thickness d is much smaller than
the coherence length ξ and the penetration depth. Current is
applied along the x-direction. For this system we solved

numerically the following TDGL equations:

⎛
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where the parameter ⃗f r( ) (see [23] for its definition) accounts
for the Tc-nonhomogeneity in the system: for ⃗ <f r( ) 1 (i.e.,

<T Tc1 c) superconductivity is strongly suppressed inside the
defect, consequently it attracts the flux domains, whereas in
the case of ⃗ >f r( ) 1 (i.e., >T Tc1 c) the defect interacts with
the flux repulsively. The equation (1) with the inhomogeneity
coefficient ⃗f r( ) which is valid at T = 0, has already been used
to describe both static [22] and dynamic [23] properties of
type-II superconductors with weakly superconducting inclu-
sions. In equations (1) and (2) we express the length in units
of the coherence length ξ and the vector potential is scaled to
Φ πξ(2 )0 (where Φ0 is the magnetic flux quantum). Time is in
units of the Ginzburg–Landau relaxation time πλ ρ=t c4 nGL

2 2

(ρnis the normal-state resistivity), the voltage, which is cal-

culated as ∫= − ∂ ∂V tA dl· , is in units of Φ ρ π λξ=V c 8n0 0
2

and the current density is measured in Φ π λ ξ=j c 80 0
2 2 .

ψ π= k T u4 B c0
1 2 is the value of the order parameter at T = 0.

The parameters u and γ, which are measures of the different
relaxation times, are taken as u = 5.79 and γ = 10 [24]. The
numerical results are obtained for the GL parameter
κ λ ξ= = 10. The infinite strip is implemented through the
periodic boundary conditions ψ ψ= +x y x L y( , ) ( , ) and

= +x y x L yA A( , ) ( , ) in the x-direction. The super-
conducting-vacuum boundary condition ψ− = iA( ) | y w0, is
used in the y-direction. A current is applied by taking the
following boundary condition for the vector potential in the y-
direction, rot = = ±y w H HA| ( 0, )z I , where H is the
applied magnetic field (zero in our case) and π=H I c2I is
the magnetic field induced by the current I. Note that in
equations (1) and (2) the screening of the magnetic field is
neglected, which is valid only for very thin superconductors
or for samples that extend infinitely in the z-direction. These
coupled nonlinear differential equations are solved self-con-
sistently in a zero electrostatic potential gauge [25], which
was recently shown to be very effective in studying the
dynamics of superconducting vortices [13].

3. I – V characteristics

3.1. Pinning-free case

As a representative example, we consider a superconducting
strip with dimensions ξ=L 32 and ξ=w 64 in the presence
of regular (a square array) and random pinning. As a reference
for our further analysis, we first demonstrate the properties of
a pinning-free sample by constructing the time averaged
voltage versus applied current (IV ) characteristics of the

Figure 1. The model system: a current-carrying superconducting
strip (dimensions × ×w L d) with weakly superconducting inclu-
sions (of size a) with critical temperature <T Tc1 c.
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system, which is shown in figure 2 together with snapshots of
the Cooper-pair density (panels 1 and 2). With increasing
applied current, zero resistance of the sample is maintained up
to a threshold current density =j j0.11c1 0, above which the
system switches into a resistive state. At low currents the
resistive state is characterized by the periodic nucleation of
slow moving Abrikosov vortex–antivortex pairs. Since no
external magnetic field is present, those vortices are created
periodically at the opposite edges of the sample and annihilate
in the middle of the sample (highlighted by dashed ellipses in
inset 1). However, the voltage signal due to Abrikosov vor-
tices is much smaller than the one generated by the fast
moving vortices (compare points 1 and 2 in figure 2). This
signal increases monotonically with applied current indicating
a larger nucleation rate of vortex–antivortex pairs. By further
increasing the applied current, the triangular vortex lattice
gets distorted and a rectangular lattice of vortices is observed

(see panel 2) [10, 13]. At this stage the vortices are deformed
and resemble the structure of fast-moving (kinematic) vortices
reported earlier [7, 8]. The distortion is more pronounced in
the middle of the sample during the annihilation of vortex–
antivortex pairs, where the speed of the vortices are largest
[8]. This transition from a slow to fast moving vortex state
results in a noticeable jump in the I – V curve (see point 2).
With further increase of the applied current more channels
with fast moving vortices appear in the system (not shown
here) before the entire sample switches into the normal state.
Thus, depending on the applied current the resistive state is
characterized either by slow moving Abrikosov vortices or
fast moving vortices (or phase-slip lines).

3.2. Square array of pinning centers

Next, we introduce a square lattice of pinning centers and
study its effect on the critical parameters of the sample. As an

Figure 2. Time averaged voltage versus current density (I – V) characteristics of the sample with width ξ=w 64 and ξ=L 32 . Inset in the
main panel shows the lower part of the I – V curve. Panels 1 and 2 show snapshots of the Cooper-pair density ψ| |2 (red/blue corresponds to
largest/zero ψ| |2) for current values indicated on the I – V curves. Black/white arrows indicate the direction of motion for vortices/antivortices
and white ellipses highlight some of the antivortices. Black ellipses show the annihilation region of a vortex–antivortex pair.
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example, we consider a square array of pinning centers of size
ξ=a 2 and period ξ=d 8 for two different values of the

inhomogeneity coefficient ⃗f r( ). The dimensions of the
sample are the same as in figure 2. Figure 3 shows the IV
characteristics of the sample with 4 × 8 pinning centers for
two values of ⃗f r( ). It is seen from this figure that the critical
current is significantly reduced by introducing pinning
( =j j0.08c1 0) due to the lowering of the penetration barrier
for the vortices by the pinning centers near the sample edge
[21]. jc1 decreases further with increasing pinning strength,
i.e. the inhomogeneity coefficient ⃗f r( ) (compare solid black
and dashed red curves in figure 3). Another mechanism for
the reduction of the critical current could be the attraction of
vortices/antivortices by the pinning centers, resulting in their
easier penetration. However, the resistive state is still char-
acterized by the periodic nucleation and annihilation of either
slow (panels 1 and 2) or fast moving (panels 3 and 4) vortex–
antivortex pairs. Notice that, although the inhomogeneity
parameter f changes stepwise at the defect interface, the order
parameter changes smoothly at the interface due to the
proximity effect [23, 24]. Slowly moving vortices/antivortices

attempt to form a triangular lattice (see black/white circles in
panel 2) to minimize their mutual repulsion. At larger currents
this triangular lattice gets distorted and a square lattice of
vortices is observed (panels 3 and 4). A large jump in the
output voltage is observed due to this structural transition.
The number of phase-slip lines are determined by the number
of columns of pinning centers.

3.3. Random pinning

Figure 4 shows the I – V characteristics of the system for two
values of ⃗f r( ) when random pinning is introduced (see back
squares in panel 1). The size of the pinning centers and their
density (i.e. the number of pinning centers) are the same as in
the case of regular pinning (see figure 3). For this particular
distribution of the pinning centers, the critical current
becomes slightly smaller ( =j j0.07c1 0) than the one for the
ordered pinning ( =j j0.08c1 0). This is because some of the
pinning centers are located close to the edges, resulting in the
local reduction of the surface barrier. In addition, they form
an easy channel for the motion of superconducting vortices
facilitating their transport through the system (see panels 1

Figure 3. I – V characteristics of the sample with width ξ=w 64 and ξ=L 32 in the presence of a square array of pinning center of size
ξ=a 2 and period ξ=d 8 for the inhomogeneity coefficient of ⃗ =f r( ) 0.5 (solid black curve) and ⃗ =f r( ) 0 (dashed red curve). Inset in the

main panel shows the lower part of the I – V curve. Panels 1–4 show snapshots of ψ| |2 for current values indicated on the I – V curves.
Location of the pinning centers are shown by black squares in panel 1. Black/white circles in panel 2 highlight the position of vortices/
antivortices.
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and 2). The resistive state is still characterized by the
nucleation/annihilation of slow moving Abrikosov vortices
(panel 1) and fast moving kinematic vortices (panels 2–4).
However, due to the randomness in the distribution of the
pinning centers, the number of channels (i.e. PSCs) for vor-
tices and antivortices are not the same: for this particular
distribution of the pinning centers the number of antivortex
channels is always larger than the one for the vortices (panels
3 and 4). Depending on the arrangement of the pinning
centers, one can have the opposite case, i.e., more channels
for the vortices than the ones for the antivortices.

4. Voltage-time characteristics

In what follows, we study the time delay of our system to an
abrupt switching on of applied current at zero external mag-
netic field, by constructing voltage versus time characteristics
of the sample. We started our simulations from the Meissner
state (i.e., ψ =| | 1) and applied a dc current pulse with
duration 5000 t0 at t = 10 t0. During that time period, we

recorded the voltage versus time (V(t)) characteristics of the
system together with the evolution of the superconducting
state. To show the properties of the resistive state in response
to the current we plot in figure 5(a) V(t) curves of the pinning-
free sample with dimensions ξ=L 32 and ξ=w 64 for dif-
ferent values of the applied current density. Snapshots of the
Cooper-pair density are also presented there to show the time
evolution of the superconducting condensate (see panels 1–4).
At smaller currents the resistive state is characterized by slow
motion of vortices and antivortices (as shown in panel 1 of
figure 2) and their annihilation results in well defined peaks in
the V(t) curves (not shown here). V(t) curves show periodic
oscillations as has been reported in previous works [26–30].
With increasing applied current, phase slip lines are formed
(panels 1 and 2 in figure 5) and the output voltage increases
considerably (see curve I in figure 5(a)). The average voltage
signal saturates to a certain value with small oscillations,
which are due to the penetration and/or annihilation of fast
moving vortices. With further increasing the applied current
the nucleation rate of vortex–antivortex pairs, as well as the
number of phase-slip lines increases (see panel 2 in figure 5)

Figure 4. I – V characteristics of the sample with width ξ=w 64 and ξ=L 32 in the presence of random pinning centers of size ξ=a 2 for
the inhomogeneity coefficient of ⃗ =f r( ) 0.5 (solid black curve) and ⃗ =f r( ) 0 (dashed red curve). Inset in the main panel shows the lower
part of the I – V curve. Panels 1–4 show snapshots of ψ| |2 for current values indicated on the I – V curves. Location of the pinning centers are
shown by black squares in panel 1. Locations of the antivortices are highlighted by white ellipses and one of the annihilation points is
indicated by the dashed-black ellipse.
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resulting in an increase of the output voltage (curve II in
figure 5(a)). At these high values of the applied current, the
voltage reaches a maximum just before the formation of
phase-slip lines (see curves II and III in figure 5(a)), which we
relate to nonequilibrium effects at the initial stage of the
resistive state formation. However, the voltage curves saturate
when the phase-slip state is established (see panel 2). Notice
that the phase slip lines are not necessarily straight and par-
allel. With further increasing the applied current, the number
and velocity of vortex–antivortex pairs increases and local hot
spots areas appear, where the density of Cooper-pairs reduces
to zero. Those hot spots are created near the sample edges and
in the middle of the sample (see panel 3), where the local
velocity of the vortices become maximal (see figure 8 of [8]).
Once created, the size of the hot spots increases in time (see
panel 4) and the entire system becomes normal. Thus, the hot

spots are unstable in time: they expand until the entire system
makes a transition to the normal state.

Figure 5(b) shows the V(t) curves of the sample with a
square array of pinning centers for ⃗ =f r( ) 0.5 and for dif-
ferent values of the applied current.The presence of the
defects changes the voltage curve of the sample considerably:
(i) transition to the phase-slip state occurs at smaller currents
due to the reduced barrier for nucleation of superconducting
vortices [21] (for example for the pinning free sample the
transition to the resistive state occurs at =j j0.155 0, whereas
for the sample with square pinning arrays this current equals
to =j j0.14 0); (ii) the delay time in the response of the system
to the applied current pulse becomes smaller (compare curves
III in figures 5(a) and (b)), which we again relate to the
reduction of the surface barrier; (iii) the output voltage satu-
rates faster as compared to the pinning-free sample and no

Figure 5. Voltage versus time ( −V t) curves of the sample with dimensions ξ=L 32 and ξ=w 64 without pinning (a), with regular (square
array) pinning (b) and with random pinning (c) for different values of the applied current pulse δ −j t t( 10 )0 . The voltage is shown for

>t t10 0. The size of the pinning centers is ξ=a 2 and the inhomogeneity coefficient is ⃗ =f r( ) 0.5. Panels 1–12 show snapshots of the
Cooper-pair density ψ| |2 at time indicated on the V(t) curves (for the used scale see figure 2).
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maxima in the V(t) curve is observed at the initial stage of the
resistive state formation (compare curves III in figures 5(a)
and (b)); and (iv) the hot spots start nucleating at the sample
edges (see panel 8), whereas in the pinning-free sample the
hot spots dominate in the middle of the sample (see panel 4).
In addition longer time is required for the normal state tran-
sition of the whole system (compare curve V in figure 5(a)
and curve IV in figure 5(b)).

Finally, figure 5(c) shows the V(t) curves of the sample
with random distribution of the pinning centers. The dimen-
sions of the sample and size, strength and density of the
pinning centers are the same as in figure 5(b). As in the case
of regular pinning, random pinning also reduces the response
time of the system as compared to the reference sample
(compare curves obtained for =j j0.18 0 in figures 5(a)–(c)).
However, in contrast to regular pinning, we observe irregu-
larities in the voltage curves which results from the disordered
motion of superconducting vortices (see panels 9 and 10). Hot
spots also appear randomly both near the edges of the sample
and in its interior (panels 11 and 12). In all three cases, the
resistive state is characterized either by slow or fast moving
vortices and the latter initiate the formation of the hot spots,
which are not stable in time and results in a complete
destruction of superconductivity. Similar behavior of the
sample is observed for larger strength of the pinning centers.

To summarize our findings about the effect of pinning on
the response of superconducting strips to an abrupt switching
on of external current, we plotted in figure 6(a) the delay time

in the formation of the phase-slip state as a function of applied
current for the samples with and without pinning. The delay
time is calculated as the difference between the switching
time of the current pulse ( =t t10 0 ) and the characteristic time
t*, when the output voltage equals half of the saturated vol-
tage at larger times. It is seen from this figure that for all
samples the delay time monotonically decreases with
increasing applied current. However, the delay time is
reduced considerably when pinning is introduced. This effect
becomes more pronounced at smaller current, where the delay
time increases faster for the pinning-free sample. As we have
discussed above, the reason for such reduction of the delay
time is the reduced penetration barrier for the superconducting
vortices. The difference between the delay times for samples
with regular and irregular pinning is very small: it is slightly
larger for random pinning. However, at smaller current the
delay time becomes larger in the case of ordered pinning
centers. Figure 6(b) shows the saturated voltage (averaged
over a time interval larger than the characteristic oscillations
of the V(t) curve) as a function of applied current in the phase-
slip state. Smallest voltage is observed for the pinning-free
sample (filled black dots) and the largest signal is obtained in
the case of irregular pinning (green squares). Such an increase
of the output voltage indicates a larger velocity of the kine-
matic vortices. The latter effect is due to the fact that the
current density becomes larger between the pinning centers
due to the current crowding [29]. The output voltage reduces
when random pinning is replaced by a periodic one (compare
solid squares and open circles). This is due to the disorder to
order transition in the dynamics of the superconducting vor-
tices [31]. Note also that the current range where the phase-
slip state is realized is much smaller for the pinning free
sample as compared to the other cases. Figure 6(c) shows the
transition time tn to the normal state, i.e., the time when the
whole system passes to the normal state, as a function of the
applied current. Contrary to the case of the phases-slip state,
now the normal state transition time is much smaller for the
pinning-free sample (solid circles). This is due to the fact that
the pinning centers create an effective path for the vortices to
move, thus preserving the rest of the superconducting con-
densate from destruction. Only a small difference in tn is
noted when two different types of pinning are introduced
(open circles and filled squares), which becomes more pro-
nounced at smaller currents.

5. Conclusions

Using the anisotropic TDGL theory, we studied the effect of
ordered and disordered pinning on the response of a super-
conducting strip to applied current. We found that pinning
considerably reduces the resistive state transition current,
which we relate to the reduced edge barrier for the super-
conducting vortices. For the same reason, the delay time of
the system to the abrupt switching on of the current is also
reduced by pinning. Qualitative changes are observed in the
dynamics of the superconducting condensate (and conse-
quently in the output signal) when pinning is included.

Figure 6. (a), (b) Delay time Δt (a) and saturated voltage (b) as a
function of applied current when the system switches to the phase-
slip state. (c) Normal state transition time Δtn as a function of applied
current. The dimensions of the system and the pinning centers are
the same as in figure 5.
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However, regardless of the presence of pinning, the resistive
state is characterized by: (i) a flux-flow state at smaller cur-
rent, (ii) the phase-slip state (or fast moving vortices) at
intermediate values of the current or, (iii) the hot spot state at
larger currents. The first two states are found to be stable in
time, whereas the hot spot, fed with a constant current,
evolves into a complete transition of the sample into the
normal state. The normal state transition time is found to be
smaller for the pinning-free sample.
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